Current Issue : October-December Volume : 2022 Issue Number : 4 Articles : 5 Articles
Non-alcoholic fatty liver disease and type 2 diabetes are representing symptoms of metabolic syndrome, which is often accompanied with hepatic fat accumulation and insulin resistance. Since liver is the major site of glucose and lipid metabolism, this study aimed to understand the effects of SCAAs and BCAAs supplementations on glucose and lipid metabolism in HepG2 cells. These cells were pretreated with SAMe, betaine, taurine, and BCAA for 24 h, followed by treatments of a high concentration of glucose (50 mM) or palmitic acid (PA, 0.5 mM) for 48 h to simulate high-glucose and high-fat environments. Pretreatment of BCAA and SCAAs inhibited the fat accumulation. At the transcriptional level, glucose and PA treatment led to significant increase of mRNA gluconeogenic enzyme. The mRNA expression level of GLUT2 was decreased by 20% in the SAMe-treated group and inhibited glucose synthesis by reducing the level of gluconeogenic enzyme. After SAMe or BCAA pretreatment, the mRNA expression of lipogenic enzymes was decreased. The PPAR-γ expression was increased after BCAA pretreatment, but SAMe not only downregulated the expression of PPAR-γ, but also inhibited the expression of ChREBP approximately 20% and SREBP-1c decreased by about 15%. Taken together, the effect of SAMe on glucose and lipid metabolism is significant especially on inhibiting hepatic lipogenesis and gluconeogenesis under the metabolic syndrome environment....
Pterostilbene (Pt) is a natural phenol found in blueberries and grapes; it shows remarkable biomedical activities similar to those of resveratrol, but its higher bioavailability is a major advantage for possible biomedical applications. Our group has recently demonstrated that long-term (30 weeks) administration of Pt to mice maintained on a high-fat diet counters weight gain and promotes browning of subcutaneous white adipose tissue (sWAT). By Real-time quantitative PCR and Western Blot analysis of the sWAT and visceral white adipose tissue (vWAT) from the same mice used in the previous study, we show here that Pt induced a long-term increase of Adiponectin, Interleukin 10 and of M2 macrophage marker Cd206. The effects were observed in sWAT, while no significant changes were detected in vWAT. The process taking place seems to mimic that occurring in sWAT during cold-induced browning. Analysis of a few pro-inflammatory cytokines (Interleukin 6, Tumor necrosis factor α) and of the NFkB pathway did not reveal marked effects of Pt supplementation. In summary, the mechanisms and processes through which Pt acts in adipose tissue appear to closely mimic those set in motion by cold-induced browning, and point to a possible impact of experimental conditions in the final output of a nutraceutical intervention....
In recent years, nutraceuticals have gained great popularity, owing to their physiological and potential health effects, such as anti-inflammatory, anti-cancer, antioxidant, and prebiotic effects, and their regulation of lipid metabolism. Since the Mediterranean diet is a nutritionally recommended dietary pattern including high-level consumption of nutraceuticals, this review aimed to summarize the main results obtained by our in vitro and in vivo studies on the effects of the major constituents of the Mediterranean diet (i.e., extra virgin olive oil compounds, polyunsaturated fatty acids, and fruit components). Based on experimental studies, the therapeutic purpose of nutraceuticals depends on their bioavailability, solubility, toxicity, and delivery system. This review provides more in-depth knowledge on the effects linked to nutraceuticals administration on human health, focusing the gastrointestinal tract and suggesting specific dietary components for personalized adjuvant therapies....
We previously reported that the dried peel powder of Citrus kawachiensis, a citrus product of Japan, exerted anti-inflammatory and neuroprotective effects in the brains of transient global cerebral ischemia model mice. It also ameliorated the hyperphosphorylation of Tau protein and the suppression of neurogenesis in the brains of the senescence-accelerated mouse-prone 8 aging model. Chronic unpredictable mild stress (CUMS) induces anxiety-like behavior, changes the composition of the gut microbiota and suppresses neurogenesis in the hippocampus. Therefore, we herein examined the effects of the dried peel powder of C. kawachiensis in a CUMS mouse model: CUMS enhanced locomotor activity, shown as the distance travelled in the open field test at the beginning of the test, while the C. kawachiensis treatment suppressed this increase. The C. kawachiensis treatment also prevented CUMS-induced decreases in hippocampal neurogenesis. The CUMS treatment changed the composition of the gut microbiota by reducing the abundance of Lactobacillus and increasing that of Bacteroides, whereas the C. kawachiensis treatment attenuated these changes. Collectively, the present results suggest that the dried peel powder of C. kawachiensis exerts neuroprotective effects in the brain and maintains the condition of the microbiome under mild stress....
Vitamin D supplementation is linked to improved outcomes from respiratory virus infection, and the COVID-19 pandemic renewed interest in understanding the potential role of vitamin D in protecting the lung from viral infections. Therefore, we evaluated the role of vitamin D using animal models of pandemic H1N1 influenza and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. In mice, dietary-induced vitamin D deficiency resulted in lung inflammation that was present prior to infection. Vitamin D sufficient (D+) and deficient (D−) wildtype (WT) and D+ and D− Cyp27B1 (Cyp) knockout (KO, cannot produce 1,25(OH)2D) mice were infected with pandemic H1N1. D− WT, D+ Cyp KO, and D− Cyp KO mice all exhibited significantly reduced survival compared to D+ WT mice. Importantly, survival was not the result of reduced viral replication, as influenza M gene expression in the lungs was similar for all animals. Based on these findings, additional experiments were performed using the mouse and hamster models of SARS-CoV-2 infection. In these studies, high dose vitamin D supplementation reduced lung inflammation in mice but not hamsters. A trend to faster weight recovery was observed in 1,25(OH)2D treated mice that survived SARS-CoV-2 infection. There was no effect of vitamin D on SARS-CoV-2 N gene expression in the lung of either mice or hamsters. Therefore, vitamin D deficiency enhanced disease severity, while vitamin D sufficiency/supplementation reduced inflammation following infections with H1N1 influenza and SARS-CoV-2....
Loading....